Site icon iFeeltech

AP Density the Right Way: How to avoid “too many APs” in glass-heavy offices

Why Glass Offices Break Traditional WiFi Design Rules

Published: September 2025 | Last updated: September 18, 2025

Key Takeaway: Glass-heavy offices create unique WiFi challenges where more access points often worsen performance rather than improve it. Success comes from strategic placement, power control, and understanding how glass affects radio frequency propagation rather than simply adding more hardware.

If your office features extensive glass—conference rooms, partitions, storefront walls—you've probably encountered a frustrating paradox: signal strength appears excellent throughout the space, yet video calls drop, applications lag, and device roaming feels inconsistent. This typically indicates over-dense WiFi deployment complicated by glass-specific radio frequency behavior.

This guide explains why glass environments require different design principles, demonstrates proper access point sizing and placement techniques, and provides specific configuration steps to achieve optimal capacity without creating interference.

Table of Contents

Why glass changes fundamental WiFi design principles

Standard interior glass creates two significant challenges for wireless network design:

Low attenuation characteristics

Most interior glass partitions provide minimal radio frequency attenuation compared to traditional drywall construction. While standard drywall typically reduces signal strength by 3-5 dB, basic interior glass may only attenuate signals by 1-2 dB. This means access point coverage cells extend much farther than anticipated, creating substantial overlap between adjacent devices.

The result is co-channel interference (CCI) and airtime contention, where multiple access points compete for the same radio spectrum. Low-E and metallized glass present the opposite challenge with high attenuation rates, but most interior office partitions fall into the low-attenuation category.

Multipath and reflection effects

Glass surfaces create radio frequency reflections that generate multipath propagation. While modern WiFi 6E and WiFi 7 equipment handles multipath better than previous generations, excessive reflections can still artificially inflate received signal strength indicator (RSSI) readings without improving signal-to-noise ratio (SNR).

This creates misleading coverage assessments where signal meters show strong connectivity while actual throughput remains poor due to interference and retry overhead.

Identifying over-deployment symptoms

Common indicators of excessive access point density:

  • Strong signal strength (RSSI > -50 dBm) with inconsistent throughput
  • High retry rates (>10%) and low MCS/PHY rates despite proximity to access points
  • Frequent roaming events between access points with minimal RSSI differences
  • Elevated airtime utilization (>60%) during periods of moderate actual usage
  • Voice and video quality issues in glass conference rooms despite nearby access points

These symptoms indicate that network performance is limited by radio frequency interference rather than inadequate coverage, requiring optimization rather than additional hardware.

Design philosophy: Capacity through controlled coverage

Effective WiFi design in glass environments prioritizes capacity management over maximum coverage. The objective is to create distinct, appropriately sized coverage cells that minimize overlap while ensuring adequate signal quality for connected devices.

Design priorities in order:

  1. Signal quality – Maintain SNR above 25 dB for reliable high-speed connectivity
  2. Airtime efficiency – Keep per-access point utilization below 50-60% during peak usage
  3. Channel reuse – Maximize spatial separation between access points using identical channels
  4. Coverage adequacy – Ensure RSSI meets minimum requirements (-70 to -65 dBm) in occupied areas

This approach typically results in fewer access points operating at lower power levels, creating more manageable coverage cells with reduced interference.

Implementation methodology: Seven-step deployment process

Step 1: Environmental and usage assessment

Step 2: Conservative initial placement

Step 3: Optimal mounting and orientation

Step 4: Channel width optimization

Modern WiFi standards offer multiple channel width options, but glass environments benefit from narrower channels:

Recommended channel configurations for dense deployments:

  • 2.4 GHz: Minimize usage or disable on most access points. When enabled, use 20 MHz channels only
  • 5 GHz: Default to 20 or 40 MHz widths. Reserve 80 MHz for sparse areas with confirmed channel availability
  • 6 GHz (WiFi 6E/7): Start with 80 MHz for modern devices, reduce to 40 MHz if utilization exceeds targets

Narrower channels provide more reuse opportunities and reduce the impact of overlapping coverage areas.

Step 5: Transmit power management

Power control is critical in glass environments where signals propagate farther than expected:

Step 6: Client behavior optimization

Configure access points to encourage proper client roaming and band selection:

Essential client management settings:

  • Band steering: Enable preferences for 5 GHz and 6 GHz bands
  • Legacy rate disabling: Disable 802.11b rates and set minimum data rates to 12-18 Mbps
  • Minimum RSSI: Implement thresholds around -75 dBm, adjusting based on performance
  • Load balancing: Enable when multiple access points serve the same area

Step 7: Performance validation and iteration

Monitor key performance indicators during actual business operations:

Practical placement strategies for glass environments

Conference room optimization

Glass conference rooms present the most significant deployment challenges due to simultaneous high-bandwidth usage (video conferencing) and acoustic isolation requirements.

Recommended conference room approach:

  • Position access points outside glass rooms when possible, near doorways for better corridor integration
  • Use separate channels for adjacent conference rooms
  • Consider dedicated access points only for rooms with 8+ regular occupants
  • Reduce transmit power to minimize spillage into corridors and adjacent rooms

Open office integration

Open areas adjacent to glass partitions require careful cell boundary management:

Channel planning for scalable performance

Glass environments require more aggressive channel planning due to extended propagation characteristics:

5 GHz optimization

Utilize all available non-overlapping channels before considering dynamic frequency selection (DFS) channels. In September 2025, most enterprise-grade access points support:

6 GHz advantages

WiFi 6E and WiFi 7 equipment provide access to 6 GHz spectrum with significant benefits for glass environments:

6 GHz deployment benefits:

  • Clean spectrum: No legacy device interference
  • Abundant channels: 59 available 20 MHz channels in the United States
  • Reduced congestion: Limited device support creates a less crowded environment
  • Modern features: Automated frequency coordination and improved efficiency

For glass offices, 6 GHz provides excellent opportunities to offload modern laptops and devices while maintaining cleaner 5 GHz performance for legacy equipment.

UniFi-specific implementation guidance

For organizations using Ubiquiti UniFi equipment, the following configurations optimize performance in glass-heavy environments:

Recommended hardware selection

Based on September 2025 product availability, these UniFi access points perform well in glass office environments:

Access point recommendations by deployment size and performance requirements:

Small offices (5-25 users):
UniFi Access Point U7 Lite – Compact WiFi 7 access point ideal for moderate density environments

Medium offices (25-75 users):
UniFi Access Point U7 Pro – High-performance WiFi 7 with 6 spatial streams for demanding environments

Large offices (75+ users):
UniFi Access Point U7 Pro Max – Maximum capacity WiFi 7 access point with 8 spatial streams

High-performance deployments (conference centers, dense glass environments):
UniFi Access Point U7 Pro XG – Flagship WiFi 7 with 6 spatial streams and 10 Gbps uplink capability

Enterprise-grade implementations (multi-gigabit backbone requirements):
UniFi Access Point U7 Pro XGS – Ultimate performance WiFi 7 with 8 spatial streams and 10 Gbps+ uplink capacity

Flagship model considerations for glass environments

The U7 Pro XG and U7 Pro XGS models offer specific advantages in challenging glass office deployments:

When flagship models provide value:

  • Multi-gigabit backbone: 10+ Gbps uplink capability supports high-density video conferencing
  • Advanced beamforming: Superior signal focusing reduces reflections from glass surfaces
  • Enhanced spatial streams: Better handling of multipath propagation common in glass environments
  • Future-proofing: Maximum WiFi 7 feature support, including multi-link operation (MLO)
  • High-capacity scenarios: Support for 200+ concurrent devices per access point

These flagship models are particularly valuable in conference centers, executive floors, or open offices with extensive glass architecture where standard access points may struggle with complex RF environments and high user density.

UniFi Network configuration steps

Configure the following settings in UniFi Network Controller version 9.0 or later:

Radio optimization settings:

  1. WiFi Band: Prefer 5G and 6G bands, minimize 2.4G usage
  2. Channel Width: 5G at 40 MHz (HT40), 6G at 80 MHz (VHT80)
  3. Transmit Power: Medium or Low for 5G/6G radios
  4. Minimum RSSI: -75 dBm starting point, adjust based on performance
  5. Rate Limiting: Enable per-client limits if bandwidth is constrained

Advanced features for glass environments

Recent UniFi firmware updates include features specifically beneficial for challenging RF environments:

For comprehensive UniFi network planning and optimization, review our complete UniFi business network setup guide.

Troubleshooting over-deployment issues

If monitoring reveals characteristics of excessive access point density, implement corrections in the following order:

Systematic optimization process:

  1. Reduce 2.4 GHz presence: Disable or minimize power on most access points
  2. Lower 5/6 GHz power: Decrease transmit power by one level and re-evaluate
  3. Tighten roaming controls: Increase minimum data rates and RSSI thresholds
  4. Narrow channel widths: Reduce from 80 MHz to 40 MHz, or 40 MHz to 20 MHz
  5. Relocate problematic access points: Move units creating overlap through the glass
  6. Remove redundant coverage: Only after confirming adequate remaining capacity
  7. Add access points: Final option, only where airtime utilization consistently exceeds 60%

Performance monitoring indicators

Track these metrics using UniFi Network or third-party monitoring tools:

Metric Healthy Range Action Required
Airtime Utilization < 50% average, < 60% peak > 70% sustained
Retry Rate < 10% > 15%
Average PHY Rate > 200 Mbps < 100 Mbps
Client RSSI -45 to -70 dBm < -75 dBm or > -40 dBm

Modern WiFi standards and glass environments

WiFi 6E and WiFi 7 advantages

Current-generation wireless standards provide several features that improve performance in challenging glass environments:

Important consideration:

While these features improve efficiency, they cannot overcome fundamental issues caused by poor access point placement or excessive coverage overlap. Proper RF design remains the foundation of effective wireless networks.

Equipment compatibility considerations

As of September 2025, device support varies across WiFi standards:

Plan deployments around actual device capabilities rather than theoretical maximum performance specifications.

Implementation planning worksheet

Use this framework to size network requirements before deployment:

Capacity planning calculations:

Step 1: User assessment per zone

  • Peak occupancy count: _______
  • Devices per person (typically 1.5-2.5): _______
  • Simultaneous usage factor (typically 0.6-0.8): _______
  • Concurrent active devices: _______

Step 2: Application requirements

  • Video calling percentage: _______ (10-15 Mbps per stream)
  • General productivity: _______ (2-5 Mbps per user)
  • File sharing and cloud access: _______ (5-10 Mbps per user)
  • Total throughput requirement: _______

Step 3: Access point estimation

  • Per-AP capacity (typically 200-400 Mbps real-world): _______
  • Target airtime utilization (50-60%): _______
  • Effective per-AP throughput: _______
  • Required access point count: _______

Step 4: Channel availability check

  • Available 5 GHz channels: _______
  • Available 6 GHz channels: _______
  • Maximum access points with channel reuse: _______

If Step 3 requires more access points than Step 4 allows, reduce per-AP coverage areas, consider higher-capacity models, or implement quality-of-service controls to manage bandwidth consumption.

Field implementation best practices

Pre-deployment validation

Before final installation, validate design assumptions:

Documentation requirements

Maintain detailed records for future optimization:

Essential documentation elements:

  • Access point locations with mount height and orientation
  • Channel assignments and power levels for each radio
  • VLAN and SSID configuration details
  • Quality of service and traffic shaping rules
  • Performance baseline measurements
  • Future expansion plans and available capacity

Maintenance and optimization schedule

Glass environments may require more frequent optimization due to changing RF characteristics:

Implementation checklist

Pre-deployment requirements:

  • ☐ Floor plan marked with glass walls and high-density zones
  • ☐ User density and application requirements documented
  • ☐ Access point count determined based on capacity rather than coverage
  • ☐ Channel plan created with adequate reuse separation
  • ☐ Power levels planned for controlled coverage areas

Installation verification:

  • ☐ Ceiling mount installation at least 1 meter from glass surfaces
  • ☐ No symmetrical access point placement across glass partitions
  • ☐ Power levels configured consistently across deployment
  • ☐ Channel assignments implemented per plan
  • ☐ 2.4 GHz radios minimized or disabled on most access points

Configuration optimization:

  • ☐ Band steering enabled for 5 GHz and 6 GHz preference
  • ☐ Legacy 802.11b rates disabled
  • ☐ Minimum data rates configured (12-18 Mbps recommended)
  • ☐ Minimum RSSI thresholds enabled and tuned
  • ☐ Quality of service rules implemented for critical applications

Performance validation:

  • ☐ Airtime utilization below 60% during peak usage
  • ☐ Retry rates below 10% across all access points
  • ☐ Average PHY rates above 200 Mbps for modern clients
  • ☐ Voice and video quality acceptable in glass conference rooms
  • ☐ Client roaming behavior is smooth and predictable
  • ☐ Throughput testing validates capacity planning assumptions

Documentation completion:

  • ☐ Network topology and configuration settings recorded
  • ☐ Performance baseline established
  • ☐ Monitoring and maintenance procedures defined
  • ☐ Escalation procedures for performance issues
  • ☐ Future expansion planning documented

Professional implementation services

Glass office environments present unique challenges that benefit from experienced RF engineering. Proper implementation requires an understanding of radio frequency propagation, interference analysis, and performance optimization techniques.

Professional site surveys and implementation services ensure optimal results for organizations planning network upgrades or experiencing performance issues in glass-heavy environments. Our team provides predictive modeling, on-site validation, and comprehensive optimization to deliver networks that perform reliably under real-world conditions.

Understanding glass environment RF behavior and implementing appropriate design principles creates wireless networks that provide consistent performance and capacity for growing business needs. Proper planning and optimization deliver significantly better results than simply adding more access points to problematic deployments.

Frequently asked questions

How do I know if my office has too many access points?

Key indicators include high airtime utilization (above 60%) during moderate usage, frequent client roaming between access points with similar signal strengths, and poor voice/video quality despite strong signal indicators. Performance monitoring tools show elevated retry rates and lower-than-expected throughput.

Should I disable 2.4 GHz entirely in glass offices?

In most cases, yes. 2.4 GHz propagates even farther through glass than 5 GHz, creating more overlap and interference. Keep 2.4 GHz enabled on minimal access points only for legacy device support, using very low power levels.

What's the recommended minimum distance between access points in glass environments?

Physical distance matters less than coverage overlap. Focus on power control to create cells that extend 15-20 meters rather than strict spacing requirements. In glass offices, this often means greater physical separation than traditional environments.

Can WiFi 6E or WiFi 7 solve glass office interference problems?

Modern standards provide better efficiency and additional spectrum (6 GHz), but cannot overcome fundamental coverage overlap issues. Proper access point placement and power control remain essential even with the latest technology.

How often should I optimize access point settings in a glass office?

Monitor performance weekly and conduct optimization quarterly. Glass environments can change characteristics due to furniture, occupancy patterns, and neighboring network changes, requiring more frequent attention than traditional offices.

Is it better to use directional antennas in glass corridors?

Directional antennas can reduce coverage overlap in long glass corridors, but most business environments benefit more from omnidirectional access points with proper power control. Directional patterns require more complex planning and limit flexibility.

This guide provides general recommendations for WiFi design in glass-heavy office environments. Specific implementations should be validated through professional site surveys and performance testing. Network requirements vary significantly based on business applications, user density, and environmental factors.For complex deployments or persistent performance issues, consult with experienced wireless networking professionals who can provide customized solutions based on detailed site analysis and performance requirements.

Disclosure: iFeelTech participates in the Ubiquiti Creator Program.
We may earn a commission when you purchase UniFi products through our links at no
additional cost to you. Our recommendations are based on professional experience and testing.

Exit mobile version